☞一、迭代器
☞python中的for循环
要了解for循环是怎么回事儿,还是要从代码的角度出发。
首先,对一个列表进行for循环。
for i in [1,2,3,4]:
print(i)
上面这段代码肯定是没有问题的,但是我们换一种情况,来循环一个数字1234试试
for i in 1234
print(i)
结果:
Traceback (most recent call last):
File "test.py", line 4, in
for i in 1234:
TypeError: 'int' object is not iterable
报错了!
“TypeError: ‘int’ object is not iterable”
说int类型不是一个iterable,那这个iterable是什么?
iterable
可迭代的;可重复的;迭代的
☞迭代和可迭代协议
☞什么是迭代
现在,我们已经知道有一个叫做“可迭代的”概念。
首先,从报错来分析,好像之所以1234不可以for循环,是因为它不可迭代。
那么如果“可迭代”,就应该可以被for循环了。
字符串、列表、元组、字典、集合都可以被for循环,说明他们都是可迭代的。
怎么来证明这一点呢?
from collections import Iterable
l = [1,2,3,4]
t = (1,2,3,4)
d = {1:2,3:4}
s = {1,2,3,4}
print(isinstance(l,Iterable))
print(isinstance(t,Iterable))
print(isinstance(d,Iterable))
print(isinstance(s,Iterable))
结合使用for循环取值的现象,再从字面上理解一下,
其实迭代就是,可以将某个数据集内的数据“一个挨着一个的取出来”,就叫做迭代。
☞可迭代协议
现在从结果分析原因,能被for循环的就是“可迭代的”,但是如果正着想,for怎么知道谁是可迭代的呢?
假如我们自己写了一个数据类型,希望这个数据类型里的东西也可以使用for被一个一个的取出来,
那我们就必须满足for的要求。这个要求就叫做“协议”。
可以被迭代要满足的要求就叫做可迭代协议。
可迭代协议的定义非常简单,就是内部实现了__iter__
方法。
接下来就来验证一下:
print(dir([1,2]))
print(dir((2,3)))
print(dir({1:2}))
print(dir({1,2}))
结果:
['__add__', '__class__', '__contains__', '__delattr__', '__delitem__', '__dir__', '__doc__', '__eq__', '__format__', '__ge__', '__getattribute__', '__getitem__', '__gt__', '__hash__', '__iadd__', '__imul__', '__init__', '__iter__', '__le__', '__len__', '__lt__', '__mul__', '__ne__', '__new__', '__reduce__', '__reduce_ex__', '__repr__', '__reversed__', '__rmul__', '__setattr__', '__setitem__', '__sizeof__', '__str__', '__subclasshook__', 'append', 'clear', 'copy', 'count', 'extend', 'index', 'insert', 'pop', 'remove', 'reverse', 'sort']
['__add__', '__class__', '__contains__', '__delattr__', '__dir__', '__doc__', '__eq__', '__format__', '__ge__', '__getattribute__', '__getitem__', '__getnewargs__', '__gt__', '__hash__', '__init__', '__iter__', '__le__', '__len__', '__lt__', '__mul__', '__ne__', '__new__', '__reduce__', '__reduce_ex__', '__repr__', '__rmul__', '__setattr__', '__sizeof__', '__str__', '__subclasshook__', 'count', 'index']
['__class__', '__contains__', '__delattr__', '__delitem__', '__dir__', '__doc__', '__eq__', '__format__', '__ge__', '__getattribute__', '__getitem__', '__gt__', '__hash__', '__init__', '__iter__', '__le__', '__len__', '__lt__', '__ne__', '__new__', '__reduce__', '__reduce_ex__', '__repr__', '__setattr__', '__setitem__', '__sizeof__', '__str__', '__subclasshook__', 'clear', 'copy', 'fromkeys', 'get', 'items', 'keys', 'pop', 'popitem', 'setdefault', 'update', 'values']
['__and__', '__class__', '__contains__', '__delattr__', '__dir__', '__doc__', '__eq__', '__format__', '__ge__', '__getattribute__', '__gt__', '__hash__', '__iand__', '__init__', '__ior__', '__isub__', '__iter__', '__ixor__', '__le__', '__len__', '__lt__', '__ne__', '__new__', '__or__', '__rand__', '__reduce__', '__reduce_ex__', '__repr__', '__ror__', '__rsub__', '__rxor__', '__setattr__', '__sizeof__', '__str__', '__sub__', '__subclasshook__', '__xor__', 'add', 'clear', 'copy', 'difference', 'difference_update', 'discard', 'intersection', 'intersection_update', 'isdisjoint', 'issubset', 'issuperset', 'pop', 'remove', 'symmetric_difference', 'symmetric_difference_update', 'union', 'update']
总结一下:可以被for循环的都是可迭代的,要想可迭代,内部必须有一个__iter__
方法。
接着分析,__iter__
方法做了什么事情呢?
print([1,2].__iter__())
结果
<list_iterator object at 0x1024784a8>
执行了list([1,2])的__iter__
方法,得到了一个list_iterator,
现在又得到了一个新名词——iterator
。
iterator
迭代器,迭代程序
iterator,是一个计算机中的专属名词,叫做迭代器
☞迭代器协议
知道“可迭代”之后,那么什么叫“迭代器”?
虽然不知道什么叫迭代器,但是现在已经有一个迭代器了,这个迭代器是一个列表的迭代器。
先来看看这个列表的迭代器比起列表来说实现了哪些新方法,这样就能揭开迭代器的神秘面纱了
'''
dir([1,2].__iter__())是列表迭代器中实现的所有方法,dir([1,2])是列表中实现的所有方法,都是以列表的形式返回给我们的,为了看的更清楚,我们分别把他们转换成集合,
然后取差集。
'''
#print(dir([1,2].__iter__()))
#print(dir([1,2]))
print(set(dir([1,2].__iter__()))-set(dir([1,2])))
结果:
{'__length_hint__', '__next__', '__setstate__'}
在列表迭代器中多了三个方法,那么这三个方法都分别做了什么事呢?
ter_l = [1,2,3,4,5,6].__iter__()
#获取迭代器中元素的长度
print(iter_l.__length_hint__())
#根据索引值指定从哪里开始迭代
print('*',iter_l.__setstate__(4))
#一个一个的取值
print('**',iter_l.__next__())
print('***',iter_l.__next__())
这三个方法中,能让我们一个一个取值的神奇方法就是__next__
在for循环中,就是在内部调用了__next__
方法才能取到一个一个的值。
接下来就用迭代器的next方法来写一个不依赖for的遍历。
l = [1,2,3,4]
l_iter = l.__iter__()
item = l_iter.__next__()
print(item)
item = l_iter.__next__()
print(item)
item = l_iter.__next__()
print(item)
item = l_iter.__next__()
print(item)
item = l_iter.__next__()
print(item)
这是一段会报错的代码,如果我们一直取next取到迭代器里已经没有元素了,
就会抛出一个异常StopIteration,告诉我们,列表中已经没有有效的元素了。
这个时候,就要使用异常处理机制来把这个异常处理掉。
l = [1,2,3,4]
l_iter = l.__iter__()
while True:
try:
item = l_iter.__next__()
print(item)
except StopIteration:
break
现在就是使用while循环实现了原本for循环做的事情,这个l.__iter__()
就是一个迭代器。
迭代器遵循迭代器协议:必须拥有__iter__
方法和__next__
方法。
print('__next__' in dir(range(12))) #查看'__next__'是不是在range()方法执行之后内部是否有__next__
print('__iter__' in dir(range(12))) #查看'__next__'是不是在range()方法执行之后内部是否有__next__
from collections import Iterator
print(isinstance(range(100000000),Iterator)) #验证range执行之后得到的结果不是一个迭代器
☞二、生成器
☞初识生成器
我们知道的迭代器有两种:
一种是调用方法直接返回的,一种是可迭代对象通过执行iter方法得到的
迭代器有的好处是可以节省内存。
如果在某些情况下,我们也需要节省内存,就只能自己写。
我们自己写的这个能实现迭代器功能的东西就叫生成器。
Python中提供的生成器:
1.生成器函数:常规函数定义,但是,使用yield语句而不是return语句返回结果。yield语句一次返回一个结果,在每个结果中间,挂起函数的状态,以便下次重它离开的地方继续执行
2.生成器表达式:类似于列表推导,但是,生成器返回按需产生结果的一个对象,而不是一次构建一个结果列表
生成器Generator:
本质:迭代器(所以自带了
__iter__
方法和__next__
方法,不需要我们去实现)特点:惰性运算,开发者自定义
☞生成器函数
一个包含yield
关键字的函数就是一个生成器函数。
yield可以为我们从函数中返回值,但是yield又不同于return,return的执行意味着程序的结束,调用生成器函数不会得到返回的具体的值,而是得到一个可迭代的对象。每一次获取这个可迭代对象的值,就能推动函数的执行,获取新的返回值。直到函数执行结束。
import time
def genrator_fun1():
a = 1
print('现在定义了a变量')
yield a
b = 2
print('现在又定义了b变量')
yield b
g1 = genrator_fun1()
print('g1 : ',g1) #打印g1可以发现g1就是一个生成器
print('-'*20) #我是华丽的分割线
print(next(g1))
time.sleep(1) #sleep一秒看清执行过程
print(next(g1))
生成器有什么好处呢?就是不会一下子在内存中生成太多数据
假如我想让工厂给学生做校服,生产2000000件衣服,我和工厂一说,工厂应该是先答应下来,然后再去生产,我可以一件一件的要,也可以根据学生一批一批的找工厂拿。而不能是一说要生产2000000件衣服,工厂就先去做生产2000000件衣服,等回来做好了,学生都毕业了。。。
#初识生成器二
def produce():
"""生产衣服"""
for i in range(2000000):
yield "生产了第%s件衣服"%i
product_g = produce()
print(product_g.__next__()) #要一件衣服
print(product_g.__next__()) #再要一件衣服
print(product_g.__next__()) #再要一件衣服
num = 0
for i in product_g: #要一批衣服,比如5件
print(i)
num +=1
if num == 5:
break
#到这里我们找工厂拿了8件衣服,我一共让我的生产函数(也就是produce生成器函数)生产2000000件衣服。
#剩下的还有很多衣服,我们可以一直拿,也可以放着等想拿的时候再拿
☞更多应用
生成器监听文件输入的例子
import time
def tail(filename):
f = open(filename)
f.seek(0, 2) #从文件末尾算起
while True:
line = f.readline() # 读取文件中新的文本行
if not line:
time.sleep(0.1)
continue
yield line
tail_g = tail('tmp')
for line in tail_g:
print(line)
☞send
def generator():
print(123)
content = yield 1
print('=======',content)
print(456)
yield2
g = generator()
ret = g.__next__()
print('***',ret)
ret = g.send('hello') #send的效果和next一样
print('***',ret)
#send 获取下一个值的效果和next基本一致
#只是在获取下一个值的时候,给上一yield的位置传递一个数据
#使用send的注意事项
# 第一次使用生成器的时候 是用next获取下一个值
# 最后一个yield不能接受外部的值
计算移动平均值(1)
def averager():
total = 0.0
count = 0
average = None
while True:
term = yield average
total += term
count += 1
average = total/count
g_avg = averager()
next(g_avg)
print(g_avg.send(10))
print(g_avg.send(30))
print(g_avg.send(5))
计算移动平均值(2)_预激协程的装饰器
def init(func): #在调用被装饰生成器函数的时候首先用next激活生成器
def inner(*args,**kwargs):
g = func(*args,**kwargs)
next(g)
return g
return inner
@init
def averager():
total = 0.0
count = 0
average = None
while True:
term = yield average
total += term
count += 1
average = total/count
g_avg = averager()
# next(g_avg) 在装饰器中执行了next方法
print(g_avg.send(10))
print(g_avg.send(30))
print(g_avg.send(5))
☞yield from
def gen1():
for c in 'AB':
yield c
for i in range(3):
yield i
print(list(gen1()))
def gen2():
yield from 'AB'
yield from range(3)
print(list(gen2()))
☞列表推导式和生成器表达式
egg_list=['鸡蛋%s' %i for i in range(10)] #列表解析
laomuji=('鸡蛋%s' %i for i in range(10))#生成器表达式
print(laomuji)
print(next(laomuji)) #next本质就是调用__next__
print(laomuji.__next__())
print(next(laomuji))
总结:
1.把列表解析的[]换成()得到的就是生成器表达式
2.列表解析与生成器表达式都是一种便利的编程方式,只不过生成器表达式更节省内存
3.Python不但使用迭代器协议,让for循环变得更加通用。大部分内置函数,也是使用迭代器协议访问对象的。
例如, sum函数是Python的内置函数,该函数使用迭代器协议访问对象,而生成器实现了迭代器协议,
所以,我们可以直接这样计算一系列值的和:
sum(x ** 2 for x in range(4))
而不用多此一举的先构造一个列表:
sum([x ** 2 for x in range(4)])
☞三、小结
可迭代对象:
拥有
__iter__
方法特点:惰性运算,例如:
range(),str,list,tuple,dict,set
迭代器Iterator:
拥有
__iter__
方法和__next__
方法
生成器Generator:
本质:迭代器,所以拥有
__iter__
方法和__next__
方法特点:惰性运算,开发者自定义
使用生成器的优点:
1.延迟计算,一次返回一个结果。也就是说,它不会一次生成所有的结果,这对于大数据量处理,将会非常有用。
#列表解析
sum([i for i in range(100000000)])#内存占用大,机器容易卡死
#生成器表达式
sum(i for i in range(100000000))#几乎不占内存
2.提高代码可读性